ЭЛЕКТРОСПЕЦ
ЭЛЕКТРОСПЕЦ

Классификация электрических аппаратов
высокого напряжения

  1. 1.1 Коммутационные аппараты
  2. 1.2 Ограничивающие аппараты
  3. 1.3 Измерительные аппараты
  4. 1.4 Компенсирующие аппараты
  5. 1.5 Распределительные устройства

К электрическим аппаратам высокого напряжения  относят аппараты, рассчитанные на длительную работу при номинальных напряжениях более 1000 В. Приведем общепринятую  классификацию этих аппаратов по функциональному признаку.
В соответствии с ней аппараты высокого напряжения делятся на следующие виды:
— коммутационные аппараты;
— ограничивающие аппараты;
— компенсирующие аппараты;
— измерительные аппараты;
— комплектные распределительные устройства.

1.1 Коммутационные аппараты

К коммутационным аппаратам относят выключатели, выключатели нагрузки, разъединители.
Они служат для коммутации цепей распределения энергии, вырабатываемой электростанциями, и для коммутации цепей схем электроснабжения потребителей.
Выключатели служат для коммутации (включений и отключений) в цепи токов, возможных в эксплуатации. Различают токи номинальные, короткого замыкания, емкостные токи длинных линий, конденсаторных батарей и др.
Характерной особенностью выключателей является отключение поврежденного участка в течение единиц полупериодов промышленной частоты сети. Выключатели должны осуществлять многократную коммутацию номинальных токов до 150 000 включений и отключений (ВО) и многократную коммутацию токов короткого замыкания (до 100 ВО).
Одной из наиболее сложных проблем при коммутации сильных токов является гашение дуги, возникающей между контактами. В соответствии с методами гашения дуги определяют типы выключателей.

Типы выключателей

Масляные выключатели. В этих аппаратах дугогасительное устройство заполнено трансформаторным маслом. Гашение электрической дуги осуществляется путем эффективного ее охлаждения потоками газа, возникающего при разложении масла дугой. В настоящее время наиболее широко распространены маломасляные выключатели на напряжение 10...20 кВ и 110...220 кВ.
Электромагнитные выключатели. В этих аппаратах на электрическую дугу, возникающую в процессе отключения, действует магнитное поле, которое загоняет дугу в керамическую гасительную камеру. Охлаждение дуги в камере создает условия для ее гашения. Электромагнитные выключатели выпускаются на напряжение 6... 10 кВ.
Воздушные выключатели. Гашение дуги аппаратов этого типа осуществляется посредством потока сжатого воздуха. Номинальное напряжение выключателей до 1150 кВ.
Элегазовые выключатели. Гашение дуги в элегазовых аппаратах производится либо потоком элегаза, либо путем подъема давления в камере за счет дуги, горящей в замкнутом объеме газа. Применяются на все классы напряжения. Наибольшее напряжение на один разрыв выключателя достигает 750 кВ.
Вакуумные выключатели. В этих аппаратах контакты расходятся в вакууме. Одноразрывные аппараты применяются при напряжении до 35 кВ.
Выключатели нагрузки — это электрические аппараты, предназначенные в основном для включения и отключения нагрузочных токов цепей вплоть до номинальных токов (до 1000 А, 10 кВ). Эти аппараты не способны отключать токи КЗ, которые отключаются либо предохранителями, либо другими выключателями, включенными последовательно с выключателями нагрузки.
Разъединители применяются для коммутации элементов цепи при отсутствии тока. Это позволяет выводить оборудование для ревизии и ремонта (сначала ток отключается выключателем, потом цепь отсоединяется разъединителем). Разъединители могут отключать небольшой ток холостого хода трансформаторов и линий электропередачи.

1.2 Ограничивающие аппараты

В этому типу аппаратов относятся предохранители, реакторы, разрядники, нелинейные ограничители перенапряжений.
Предохранители служат для защиты силовых трансформаторов, воздушных и кабельных линий, конденсаторов, электродвигателей и трансформаторов напряжения от недопустимых токов.
При наступлении недопустимой перегрузки или аварии сгорает плавкая вставка предохранителя и возникшая при этом дуга гаснет в дугогасительном устройстве.
Различают токоограничивающие предохранители, в которых процесс отключения оканчивается раньше, чем ток достигнет максимального (установившегося) значения (номинальное напряжение до 35 кВ), и выхлопные предохранители, в которых дуга гаснет при переходе тока через нуль (номинальное напряжение до 110 кВ).
Токоограничивающие реакторы представляют собой практически чисто индуктивные сопротивления, включаемые последовательно с нагрузкой. В нормальном режиме падение напряжения на реакторе не более 10% номинального напряжения. Остальная часть напряжения приложена к нагрузке. При коротком замыкании у потребителя через реактор протекает соответствующий ток. Вследствие значительного сопротивления реактора ток ограничивается до значения, не опасного для кабеля, и может быть отключен выключателем небольшой мощности. Благодаря реактору напряжение на сборных шинах близко к номинальному значению. Все потребители при этом работают при номинальном напряжении, кроме потребителя, у которого произошло короткое замыкание.
Разрядники и ограничители перенапряжения служат для ограничения напряжения, появляющегося на шинах и аппаратах высокого напряжения при коммутационных и атмосферных перенапряжениях.
Трубчатый разрядник (ТР) служит для ограничения перенапряжений на линиях электропередачи и на подходах к подстанциям. ТР состоит из разрядного промежутка и устройств гашения сопровождающей дуги. ТР имеют крутую вольт-секундную характеристику, что делает их непригодными для защиты электрооборудования подстанций, имеющего пологую вольт-секундную характеристику.
Вентильный разрядник состоит из искрового промежутка и столба нелинейных резисторов (дисков). При появлении перенапряжений сначала пробивается искровой промежуток и по нелинейному резистору протекает ток. На изоляцию воздействует напряжение, появляющееся на нелинейном резисторе. Оно должно быть меньше электрической прочности защищаемого оборудования. Дуга сопровождающего тока гасится искровыми промежутками при переходе тока через нуль.
Ограничитель перенапряжений (ОПН) является резистором с высокой нелинейностью. Это устройство не имеет искровых промежутков и непосредственно присоединяется параллельно защищаемому объекту. При рабочем напряжении ток через ОПН составляет миллиамперы. При перенапряжениях токи достигают сотен и тысяч ампер. Кратность коммутационных перенапряжений не превышает 1,75; при грозовых перенапряжениях — 2,42.

1.3 Измерительные аппараты

К ним относятся трансформаторы тока и напряжения, делители напряжения. Для контроля состояния энергетических систем необходимо непрерывное измерение тока и напряжения. Эту функцию выполняют измерительные трансформаторы тока и напряжения.
Трансформаторы тока (ТТ) преобразуют измеряемый ток в ток стандартного значения 1...5 А и изолируют цепи измерений и релейной защиты от цепей высокого напряжения. Главное требование к ТТ — малые погрешности в нормальном режиме и при коротких замыканиях. Наиболее широко используются электромагнитные трансформаторы тока. Существуют оптоэлектронные трансформаторы тока. Оптоэлектронный датчик тока, расположенный на высоком потенциале, выдает оптический сигнал, модулированный измеряемым током. По оптической линии связи сигнал передается на потенциал «земли», где расположен преобразователь светового сигнала в электрический. Выходной сигнал преобразователя подается на соответствующий усилитель.
Трансформаторы напряжения (ТН) преобразуют измеряемое напряжение в напряжение стандартного значения 100 или 100 A/У В. Эти аппараты создают необходимую изоляцию между высоким потенциалом первичной обмотки и цепью вторичной обмотки, к которой присоединены измерительные приборы и защитные реле.
В настоящее время разработаны и широко применяются измерительные устройства тока и напряжения, основанные на использовании эффекта Холла.

1.4 Компенсирующие аппараты

Компенсирующие аппараты — это управляемые и неуправляемые шунтирующие реакторы. В сетях высокого и сверхвысокого напряжения широко используются реакторы, включенные между токоведущими элементами и землей (шунтирующие реакторы). Их назначение — компенсация зарядной мощности в режиме малых нагрузок. При номинальном токе они отключены; по мере уменьшения нагрузки они подключаются с помощью высоковольтных выключателей. Более совершенными являются регулируемые шунтирующие реакторы. Индуктивность их меняется за счет изменения тока подмагничивания или угла открытия тиристоров. Такие реакторы позволяют получить глубокое ограничение перенапряжений.

1.5 Распределительные устройства

Совокупность электрических аппаратов, позволяющая распределять электрическую энергию и обеспечивать защиту от аварийных режимов, называется распределительным устройством (РУ).
Различают сборные РУ и комплектные распределительные устройства (КРУ).
В первом случае для РУ строится специальное здание и все элементы РУ монтируются на стендах или перегородках здания. Это требует больших затрат, квалифицированного труда и времени.
Во втором случае все ячейки КРУ изготавливаются на заводе и собираются в готовое распределительное устройство. Монтаж на месте установки сводится к подключению сборных шин, отходящих кабелей и присоединению к источникам питания приводов выключателей и релейной защиты. Все это требует малых затрат времени.
Выпускаются КРУ, предназначенные для наружной установки (на открытом воздухе) — КРУН. Создаются также герметизируемые КРУ, заполненные элегазом — КРУЭ. Это позволяет значительно уменьшить габариты и повысить надежность изделия.
В КРУЭ могут использоваться как элегазовые, так и вакуумные выключатели. В последнем случае элегаз обеспечивает изоляцию между токоведущими элементами КРУЭ. В настоящее время выпускаются КРУЭ на номинальные напряжения 110 и 220 кВ и ведутся работы по созданию КРУЭ на напряжение вплоть до 1150 кВ.
Использование КРУ (особенно КРУЭ) дает возможность резко сократить площадь и объем РУ и ввести высокое напряжение в глубь городов и центров потребления электроэнергии. При этом удается резко увеличить надежность работы энергосистем.